MDP-DPR604
Sahan T. M. Dissanayake
Name: \qquad Travel Cost Worksheet

12/1/2015

Creating a Travel Cost Demand Function

1
Based on http://www.ecosystemvaluation.org/travel_costs.htm INSTRUCTIONS

Fill in table 1 to calculate the visits per 1000 people from each zone
Fill in table 2 to calculate the total travel costs
Summarize the travel costs/trip and visists/1000 in Table 3

We can run a regression on table 3 to find the 'a' and 'b' from visits/1000 = a+b*travel cost

I give you the results for this equation

Complete table 4 by pluging in the new travel cost into the regression equation to calculate the number of visits/1000

Summarize the travel cost and total visits in table 5
Plot the results

Zone	Total Visits/Year	Zone Population	Visits/1000
$\mathbf{0}$	$\mathbf{2 5 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 5 0}$
$\mathbf{1}$	$\mathbf{7 0 0}$	$\mathbf{3 5 0 0}$	$\mathbf{2 0 0}$
Total Visits	$\mathbf{9 5 0}$		

Table 1: Visitor Information

Travel cost Wage (\$/hr)		$\begin{aligned} & \$ 0.50 \\ & 30 \end{aligned}$	Wage (\$/min)	0.5	
Zone	Round Trip Travel Distance	Round Trip Travel Time	Distance times Cost/Mile (\$0.50)	Travel Time times Cost/Minute (\$0.50)	Total Travel Cost/Trip
0	5	10	\$2.50	5	7.5
1	10	20	5	10	15

Table 2: Travel Cost Calculation

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	1
R Square	1
Adjusted R Sc	65535
Standard Erro	0
Observations	2

Zone	Visits/1000	Total Travel Cost/Trip
0	250	7.5
1	200	15
	Table 3: Data for Regression	

ANOVA		$d f$		SS
	1	1250	1250	\#NUM!
Regression	0	0	65535	
Residual	1	1250		
Total				
Coefficienttandard Err				
	t Stat	P-value		
Intercept	300	0	65535	\#NUM!
X Variable 1	-6.6667	0	65535	\#NUM!

Regression Requation

Visits/1000 = constant + coef*Total Travel Cost per Trip
(NOTE: We ignore demographic variables and other factors)
Visits/1000 =
300.00 + Total Travel Cost per Trip *

Visits/1000 $=300.00+$ Total Travel Cost per Trip * $\quad-6.67$
Visits $1000=300.00+$ Total Travel Cost per Trip
Added Travel Cost
\$10

Zone	Travel Cost plus $\$ 10$	Visits/1000	Population	Total Visits
0	17.5	183.33	1000	183.33
1	25	133.33	3500	466.67
			Total Visits	650.00

Table 4A: \$10 Added Travel Cost
Added Travel Cost
\$20

Zone	Travel Cost plus $\$ 20$	Visits/1000	Population	Total Visits
0	27.5	116.67	$\mathbf{1 0 0 0}$	$\mathbf{1 1 6 . 6 7}$
1	35	66.67	$\mathbf{3 5 0 0}$	233.33
			Total Visits	$\mathbf{3 5 0 . 0 0}$

Table 4B: \$20 Added Travel Cost
Added Travel Cost
\$30

Zone	Travel Cost plus $\$ 30$	Visits/1000	Population	Total Visits
0	37.5	50.00	$\mathbf{1 0 0 0}$	50.00
1	45	0.00	$\mathbf{3 5 0 0}$	0.00
			Total Visits	$\mathbf{5 0 . 0 0}$

Table 4C: \$30 Added Travel Cost
Added Travel Cost \$40

Zone	Travel Cost plus $\$ 40$	Visits/1000	Population	Total Visits
0	47.5	-16.67	$\mathbf{1 0 0 0}$	0.00
1	55	-66.67	$\mathbf{3 5 0 0}$	0.00
			Total Visits	$\mathbf{0 . 0 0}$

Table 4D: \$40 Added Travel Cost

300 +Total Travel Cost per Trip*
-6.6667

The equation you need

Visits/1000 =

Visits/1000 = 300.00 +Total Travel Cost per Trip*-6.67

Added Travel Cost	Total Visits
0	950.00
10	650.00
20	350.00
30	50.00
40	0.00

Table 5: Added Travel Costs vs Visits

